Title: | Liu Regression with Liu Biasing Parameters and Statistics |
---|---|
Description: | Linear Liu regression coefficient's estimation and testing with different Liu related measures such as MSE, R-squared etc. REFERENCES i. Akdeniz and Kaciranlar (1995) <doi:10.1080/03610929508831585> ii. Druilhet and Mom (2008) <doi:10.1016/j.jmva.2006.06.011> iii. Imdadullah, Aslam, and Saima (2017) iv. Liu (1993) <doi:10.1080/03610929308831027> v. Liu (2001) <doi:10.1016/j.jspi.2010.05.030>. |
Authors: | Imdad Ullah Muhammad [aut, cre]
|
Maintainer: | Imdad Ullah Muhammad <[email protected]> |
License: | GPL-2 | GPL-3 |
Version: | 1.1.2 |
Built: | 2025-01-24 05:24:30 UTC |
Source: | https://github.com/cran/liureg |
R package for fitting linear Liu Regression and Estimator which is proposed by Liu (1993) <doi:10.1080/03610929308831027>.
This package contains functions for fitting Liu regression models, including function for computation of different Liu related statistics (such as MSE, Var-Cov matrix, R-squared), estimation of biasing parameter from different researchers, testing of Liu coefficients, model selection criteria, residuals, predicted values and fitted values. The package also includes function for plotting of Liu coefficients and different Liu statistics for selection of optimal value of biasing parameter .
For a complete list of functions, use library(help="liureg")
.
Muahmmad Imdad Ullah, Muhammad Aslam
The dest
function computes different Liu biasing parameters available in the literature, proposed by different researchers such as given in Liu (1993) <doi:10.1080/03610929308831027>, Liu (2011) <doi:10.1016/j.jspi.2010.05.030>, and Ozkale and Kaciranlar (2007) <doi:10.1080/03610920601126522>.
dest(object, ...) ## S3 method for class 'liu' dest(object, ...) ## S3 method for class 'dliu' print(x, ...)
dest(object, ...) ## S3 method for class 'liu' dest(object, ...) ## S3 method for class 'dliu' print(x, ...)
object |
An object of class "liu". |
x |
An object of class "dliu" for the |
... |
Not presently used in this implementation. |
The dest
function computes different biasing parameter for the Liu regression. All these methods are already available in the literature proposed by various authors.
This function returns the list of following estimators of Liu parameter, available in the literature.
dopt |
By Liu (1993): |
dILE |
By Liu, (2011): where, |
dmm |
Liu, (1993): |
dcl |
By Liu, (1993): |
GCV |
GCV criterion for selection of optimal |
dGCV |
returns value of |
Muhammad Imdad Ullah, Muhammad Aslam
Akdeniz, F. and Kaciranlar, S. (1995). On the Almost Unbiased Generalized Liu Estimators and Unbiased Estimation of the Bias and MSE. Communications in Statistics-Theory and Methods, 24, 1789–1897. http://doi.org/10.1080/03610929508831585.
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
Liu, X-Q. (2011). Improved Liu Estimator in a Linear Regression Model. Journal of Statistical Planning and Inference,141, 189–196. https://doi.org/10.1016/j.jspi.2010.05.030.
Ozkale, R. M. and Kaciranlar, S. (2007). A Prediction-Oriented Criterion for Choosing the Biasing Parameter in Liu Estimation. Commincations in Statistics-Theory and Methods, 36(10): 1889–1903. http://doi.org/10.1080/03610920601126522.
Liu model fitting liu
, Liu residuals residuals.liu
, Liu PRESS press.liu
, Testing of Liu coefficients summary.liu
mod<-liu(y ~ ., data = as.data.frame(Hald), d = seq(-5, 5, 0.1)) dest(mod) ## Vector of GCV values for each d dest(mod)$GCV
mod<-liu(y ~ ., data = as.data.frame(Hald), d = seq(-5, 5, 0.1)) dest(mod) ## Vector of GCV values for each d dest(mod)$GCV
Heat evolved during setting of 13 cement mixtures of four basic ingredients. Each ingredient percentage appears to be rounded down to a full integer. The sum of the four mixture percentages varies from a maximum of 99% to a minimum of 95%. If all four regressor X-variables always summed to 100%, the centered X-matrix would then be of rank only 3. Thus, the regression of heat on four X-percentages is ill-conditioned, with an approximate rank deficiency of MCAL = 1.
data(Hald)
data(Hald)
A data frame with 13 observations on the following 5 variables.
X1
p3ca: Integer percentage of 3CaO.Al2O3 in the mixture.
X2
p3cs: Integer percentage of 3CaO.SiO2 in the mixture.
X3
p4caf: Integer percentage of 4CaO.Al2O3.Fe2O3 in the mixture.
X4
p2cs: Integer percentage of 2CaO.SiO2 in the mixture.
y
hear: Heat (cals/gm) evolved in setting, recorded to nearest tenth.
The (lmridge) Hald data are identical to the (MASS) cement data except for variable names.
Woods, H., Steinour, H.H. and Starke, H.R. (1932). Effect of Composition of Portland Cement on Heat Evolved During Hardening. Industrial Engineering and Chemistry 24: 1207–1214.
Hald, A. (1952). Statistical Theory with Engineering Applications.(page 647.) New York; Wiley.
The hatl
function computes hat matrix of Liu regression (Liu (1993) <doi:10.1080/03610929308831027>).
hatl(object, ...) ## S3 method for class 'liu' hatl(object, ...)
hatl(object, ...) ## S3 method for class 'liu' hatl(object, ...)
object |
An object of class "liu". |
... |
Not presently used in this implementation. |
Hat matrix for scalar or vector values of biasing parameter provided as argument to
liu
function. It is used to compute degrees of freedom for given , and error degree of freedom etc. The hat matrix can be computed using formula
.
Returns a list of matrix for each biasing parameter :
hatl |
A list of hat matrix for each biasing parameter |
The hat matrix is not idempotent because it is not projection matrix, therefore it is called quasi-projection matrix.
Muhammad Imdad Ullah, Muhammad Aslam
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
Liu model fitting liu
, Liu residuals residuals.liu
, Liu PRESS press.liu
, Testing of Liu Coefficients summary.liu
mod<-liu(y ~ . , data = as.data.frame(Hald), d = c(-5, -1, 0.2, 0.3)) ## Hat matrix for each biasing parameter hatl(mod) ## Hat matrix for second biasing parameter i.e. d = -1 hatl(mod)[[2]] ## Diagonal element of hat matrix for second biasing parameter diag(hatl(mod)[[2]])
mod<-liu(y ~ . , data = as.data.frame(Hald), d = c(-5, -1, 0.2, 0.3)) ## Hat matrix for each biasing parameter hatl(mod) ## Hat matrix for second biasing parameter i.e. d = -1 hatl(mod)[[2]] ## Diagonal element of hat matrix for second biasing parameter diag(hatl(mod)[[2]])
The infoliu.liu
computes model selection criteria (AIC and BIC).
infoliu(object, ...) ## S3 method for class 'liu' infoliu(object, ...)
infoliu(object, ...) ## S3 method for class 'liu' infoliu(object, ...)
object |
An object of class "liu". |
... |
Not presently used in this implementation. |
Model information selection criteria are common way of selecting among model while balancing the competing goals of fit and parsimony. The model selection criteria AIC and BIC are computed by quantifying degree of freedom df
in the Liu regression model, using formula , where
is hat matrix from Liu regression. Model selection criteria may be helpful for selecting optimal value of biasing parameter
.
It returns a matrix of information criteria, AIC and BIC for each biasing parameter . Column of matrix indicates model selection criteria AIC and BIC, respectively, while rows indicate value of biasing parameter
for which model selection criteria are computed.
Muhammad Imdad Ullah, Muhammad Aslam
Akaike, H. (1974). A new look at the Statistical Model Identification. IEEE Transaction on Automatic Control, 9(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705.
Akdeniz, F. and Kaciranlar, S. (1995). On the Almost Unbiased Generalized Liu Estimators and Unbiased Estimation of the Bias and MSE. Communications in Statistics-Theory and Methods, 24, 1789–1897. http://doi.org/10.1080/03610929508831585.
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461–464. https://projecteuclid.org/euclid.aos/1176344136.
Testing of Liu coefficient summary.liu
mod<-liu(y~X1+X2+X3+X4, data = as.data.frame(Hald), d = seq(-5, 5, 0.1), scaling = "centered") infoliu(mod) ## AIC values infoliu(mod)[,1] ## BIC values infoliu(mod)[,2]
mod<-liu(y~X1+X2+X3+X4, data = as.data.frame(Hald), d = seq(-5, 5, 0.1), scaling = "centered") infoliu(mod) ## AIC values infoliu(mod)[,1] ## BIC values infoliu(mod)[,2]
Fits a linear Liu regression model after scaling regressors and returns an object of class "liu" (by calling liuest
function), designed to be used in plotting method, testing of Liu coefficients and for computation of different Liu related statistics. The Liu biasing parameter can be a scalar or a vector. This new biased estimator was first proposed by Liu (1993) <doi:10.1080/03610929308831027>.
liu(formula, data, d = 1, scaling=c("centered", "sc", "scaled"), ...) liuest(formula, data, d=1, scaling=c("centered", "sc", "scaled"), ...) ## Default S3 method: liu(formula, data, d = 1, scaling=c("centered", "sc", "scaled"), ...) ## S3 method for class 'liu' coef(object, ...) ## S3 method for class 'liu' print(x, digits = max(5,getOption("digits") - 5), ...) ## S3 method for class 'liu' fitted(object, ...)
liu(formula, data, d = 1, scaling=c("centered", "sc", "scaled"), ...) liuest(formula, data, d=1, scaling=c("centered", "sc", "scaled"), ...) ## Default S3 method: liu(formula, data, d = 1, scaling=c("centered", "sc", "scaled"), ...) ## S3 method for class 'liu' coef(object, ...) ## S3 method for class 'liu' print(x, digits = max(5,getOption("digits") - 5), ...) ## S3 method for class 'liu' fitted(object, ...)
formula |
Standard R formula expression, that is, a symbolic representation of the model to be fitted and has form |
data |
An optional data frame containing the variables in the model. If not found in data, the variables are taken from |
d |
Liu biasing parameter (may be a vector). |
scaling |
The method to be used to scale the predictors. The scaling option |
object |
A liu object, typically generated by a call to |
x |
An object of class |
digits |
Minimum number of significant digits to be used. |
... |
Additional arguments to be passed to or from other methods. |
liu
or liuest
function fits in Liu regression after scaling the regressors and centering the response. The liu
is default a function that calls liuest
for computation of Liu coefficients and returns an object of class "liu" designed to be used in plotting method, testing of Liu coefficients and for computation of different Liu related statistics. If intercept is present in the model, its coefficient is not penalized. However, intercept is estimated from the relation .
print.liu
tries to be smart about formatting of Liu coefficients.
liu
function returns an object of class "liu" after calling list of named objects from liuest
function:
coef |
A named vector of fitted coefficients. |
call |
The matched call. |
Inter |
Was an intercept included? |
scaling |
The scaling method used. |
mf |
Actual data used. |
y |
The centered response variable. |
xs |
The scaled matrix of predictors. |
xm |
The vector of means of the predictors. |
terms |
The |
xscale |
Square root of sum of squared deviation from mean regarding the scaling option used in |
lfit |
The fitted value of Liu regression for given biasing parameter |
d |
The Liu regression biasing parameter |
The function at the current form cannot handle missing values. The user has to take prior action with missing values before using this function.
Muhammad Imdad Ullah, Muhammad Aslam
Akdeniz, F. and Kaciranlar, S. (1995). On the Almost Unbiased Generalized Liu Estimators and Unbiased Estimation of the Bias and MSE. Communications in Statistics-Theory and Methods, 24, 1789–1897. http://doi.org/10.1080/03610929508831585.
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
Liu model fitting liu
, Liu residuals residuals.liu
, Liu PRESS press.liu
, Testing of Liu Coefficients summary.liu
data(Hald) mod<-liu(y~., data = as.data.frame(Hald), d = seq(0, 0.1, 0.01), scaling = "centered") ## Scaled Coefficients mod$coef ## Re-Scaled Coefficients coef(mod) ## Liu fitted values fitted(mod) ## Liu predited values predict(mod) ## Liu Residuals residuals(mod) ## Liu trace plot(mod) ## Liu Var-Cov matrix vcov(mod) ## Liu biasing parameters by researchers dest(mod) ## Liu related statistics lstats(mod) ## list of objects from liuest function liuest(y~., data = as.data.frame(Hald), d = seq(0, 0.1, 0.01), scaling = "centered")
data(Hald) mod<-liu(y~., data = as.data.frame(Hald), d = seq(0, 0.1, 0.01), scaling = "centered") ## Scaled Coefficients mod$coef ## Re-Scaled Coefficients coef(mod) ## Liu fitted values fitted(mod) ## Liu predited values predict(mod) ## Liu Residuals residuals(mod) ## Liu trace plot(mod) ## Liu Var-Cov matrix vcov(mod) ## Liu biasing parameters by researchers dest(mod) ## Liu related statistics lstats(mod) ## list of objects from liuest function liuest(y~., data = as.data.frame(Hald), d = seq(0, 0.1, 0.01), scaling = "centered")
The lstats
function computes the Liu regression related statistics such as variance, estimated squared bias, MSE, R-squared and adjusted R-squared etc. These statistics are computed by following Liu (1993) <doi:10.1080/03610929308831027>; Akdeniz, F. and Kaciranlar, S. (1995) <doi:10.1080/03610929508831585>; Cule, E. and De Iorioa, M. (2012); Hastie, T. and Tibshirani, R. (1990); and Mallows (1973) <doi:10.2307/1267380>.
lstats(object, ...) ## S3 method for class 'liu' lstats(object, ...) ## S3 method for class 'lstats' print(x, ...)
lstats(object, ...) ## S3 method for class 'liu' lstats(object, ...) ## S3 method for class 'lstats' print(x, ...)
object |
An object of class "liu". |
x |
An object of class "liu" for |
... |
Not presently used in this implementation. |
The lstats
function computes the Liu regression related statistics which may help in selecting appropriate optimal value of biasing parameter . If value of
is one then these statistics are equivalent to the relevant OLS statistics.
lEDF |
Residual effective degrees of freedom for given biasing parameter |
lsigma2 |
Computation of |
Cl |
Mallows |
var |
Variance of Liu regression for given biasing parameter |
bias2 |
Estimated squared bias of Liu regression for given biasing parameter |
mse |
Total MSE value for given biasing parameter |
Fv |
F-statistics value for testing of the significance of the Liu regression estimator computed for given biasing parameter |
R2 |
R-squared for given biasing parameter |
adjR2 |
Adjusted R-squared for given biasing parameter |
minmse |
Minimum MSE value for a certain value of biasing parameter |
SSER |
Sum of squares of error from Liu regression for each biasing parameter |
Muhammad Imdad Ullah, Muhammad Aslam
Akdeniz, F. and Kaciranlar, S. (1995). On the Almost Unbiased Generalized Liu Estimators and Unbiased Estimation of the Bias and MSE. Communications in Statistics-Theory and Methods, 24, 1789–1897. http://doi.org/10.1080/03610929508831585.
Cule, E. and De lorioa, M. (2012). A semi-Automated method to guide the choice of ridge parameter in ridge regression. arXiv:1205.0686v1[stat.AP]. https://arxiv.org/abs/1205.0686v1.
Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman \& Hall.
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
Mallows, C. L. (1973). Some Comments on Cp. Technometrics, 15: 661–675. http://doi.org/10.2307/1267380.
Liu model fitting liu
, Liu residuals residuals.liu
, Liu PRESS press.liu
, Testing of Liu Coefficients summary.liu
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.1), scaling = "centered") lstats(mod)
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.1), scaling = "centered") lstats(mod)
Trade-off between bias, variance and MSE of the Liu regression against vector or scalar value of biasing parameter .
## S3 method for class 'biasliu' plot(x, abline = TRUE, ...)
## S3 method for class 'biasliu' plot(x, abline = TRUE, ...)
x |
An object of "liu". |
abline |
Horizontal and vertical lines show the minimum value of the Liu MSE at certain value of biasing parameter |
... |
No presently used in this implementation. |
The effect of multicollinearity on the coefficients can be identified using different graphical display. One of them is plot of bias, variance and MSE. Addition of biasing parameter lead to a substantial impact on variance and MSE of Liu regression estimates. Therefore, a trade-off is made between bias and variance to have an acceptable MSE. The
plot.biasliu
can be helpful for selection of optimal value of biasing parameter .
Nothing returned
Muhammad Imdad Ullah, Muhammad Aslam
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Kalivas, J. H., and Palmer, J. (2014). Characterizing multivariate calibration tradeoff (bias, variance, selectivity, and sensitivity) to select model tuning parameters. Journal of Chemometrics, 28(5), 347–357. https://doi.org/10.1002/cem.2555.
Liu model fitting liu
, Liu residuals residuals.liu
, Liu PRESS press.liu
, Testing of Liu Coefficients summary.liu
mod<-liu(y~., as.data.frame(Hald), d = seq(-5, 5, 0.1)) ## for indication of vertical line (biasing parameter d) and ## horizontal line (minimum Liu MSE value corresponding to vertical line) plot.biasliu(mod) ## without horizontal and vertical line plot.biasliu(mod, abline = FALSE)
mod<-liu(y~., as.data.frame(Hald), d = seq(-5, 5, 0.1)) ## for indication of vertical line (biasing parameter d) and ## horizontal line (minimum Liu MSE value corresponding to vertical line) plot.biasliu(mod) ## without horizontal and vertical line plot.biasliu(mod, abline = FALSE)
Plot of the Liu AIC and BIC model selection criteria against Liu degrees of freedom.
## S3 method for class 'infoliu' plot(x, abline = TRUE, ...)
## S3 method for class 'infoliu' plot(x, abline = TRUE, ...)
x |
An object of class "liu". |
abline |
Vertical line to show minimum value of Liu MSE at certain of Liu degrees of freedom. |
... |
Not presently used in this implementation. |
Plot of the Liu AIC and BIC against the Liu degree of freedom (sum of diagonal elements of the Liu Hat matrix). A vertical line represents the minimum Liu MSE at certain value of the Liu degree of freedom.
Nothing returned
Muhammad Imdad Ullah, Muhammad Aslam
Akaike, H. (1974). A new look at the Statistical Model Identification. IEEE Transaction on Automatic Control, 9(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705.
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics, 6(2), 461–464. https://projecteuclid.org/euclid.aos/1176344136.
Liu model fitting liu
, Liu residuals residuals.liu
, Liu PRESS press.liu
, Testing of Liu Coefficients summary.liu
, bias variance trade-off plot.biasliu
mod<- liu(y~., as.data.frame(Hald), d = seq(-5, 5, 0.1)) ## for indication of minimum MSE at Liu df (as vertical line) plot.infoliu(mod) ## without vertical line plot.infoliu(mod, abline = FALSE)
mod<- liu(y~., as.data.frame(Hald), d = seq(-5, 5, 0.1)) ## for indication of minimum MSE at Liu df (as vertical line) plot.infoliu(mod) ## without vertical line plot.infoliu(mod, abline = FALSE)
Plot of the Liu coefficient for scalar or vector values of biasing parameter .
## S3 method for class 'liu' plot(x, abline = TRUE, ...)
## S3 method for class 'liu' plot(x, abline = TRUE, ...)
x |
An object of class "liu". |
abline |
Vertical line to minimum value of MSE at certain value of biasing parameter |
... |
Not presently used in this implementation. |
Graphical way of judging optimal value of biasing parameter . The biasing parameter may be selected for acceptable (or minimum) value of MSE.
Nothing returned
Muhammad Imdad Ullah, Muhammad Aslam
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
Liu model fitting liu
, Liu residuals residuals.liu
, Liu PRESS press.liu
, Testing of Liu Coefficients summary.liu
, Plot of bias variance trade-off plot.biasliu
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.4)) plot(mod) plot(mod, abline = TRUE)
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.4)) plot(mod) plot(mod, abline = TRUE)
Predicted values based on the Liu regression model for scalar or vector values of biasing parameter .
## S3 method for class 'liu' predict(object, newdata, na.action = na.pass, terms = NULL, ...)
## S3 method for class 'liu' predict(object, newdata, na.action = na.pass, terms = NULL, ...)
object |
An object of class "liu". |
newdata |
An optional data frame in which to look for variables with which to predict. |
na.action |
Function determine what should be done with missing values in |
terms |
The |
... |
Not presently used in this implementation. |
The predict.liu
function predicted values, obtained by evaluating the regression function in the frame newdata
which defaults to model.frame (object
). If newdata
is omitted the predictions are based on the data used for the fit. In that case how cases with missing values in the original fit are handled is determined by the na.action
argument of that fit. If na.action=na.omit
omitted cases will not appear in the predictions, whereas if na.action=na.exclude
they will appear (in predictions), with value NA.
predict.liu
produces a vector of prediction or a matrix of predictions for scalar or vector values of biasing parameter .
Variables are first looked for in newdata
and then are searched for in the usual way (which will include the environment of the formula used in the fit). A warning will be given if the variables found are not of the same length as those in the newdata
if it was supplied.
Muhammad Imdad Ullah, Muhammad Aslam
Liu model fitting liu
, Liu residuals residuals.liu
, Liu PRESS press.liu
, Testing of Liu Coefficients summary.liu
mod <- liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.1)) predict(mod) predict(mod, newdata=as.data.frame(Hald[1:5, -1]))
mod <- liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.1)) predict(mod) predict(mod, newdata=as.data.frame(Hald[1:5, -1]))
The press.liu
function computes predicted residual sum of squares (PRESS), computed from by following Ozkale and Kaciranlar (2007) <doi:10.1080/03610920601126522>.
press(object, predr = FALSE, ...) ## S3 method for class 'liu' press(object, predr = FALSE, ...)
press(object, predr = FALSE, ...) ## S3 method for class 'liu' press(object, predr = FALSE, ...)
object |
An object of class "liu". |
predr |
If |
... |
Not presently used in this implementation. |
For all of the n
leave-one-out predicted residual sum of squares is calculated by fitting full regression model. PRESS is computed by using, or
, where
's ith diagonal element,
's ith diagonal element and
is the ith residual at specific value of
.
The press.liu
produces a vector of PRESS for scalar or vector values of biasing parameter . If argument
predr
is TRUE
then predicted residuals are returned instead of predicted residual sum of squares.
Muhammad Imdad Ullah, Muhammad Aslam
Akdeniz, F. and Kaciranlar, S. (1995). On the Almost Unbiased Generalized Liu Estimators and Unbiased Estimation of the Bias and MSE. Communications in Statistics-Theory and Methods, 24, 1789–1897. http://doi.org/10.1080/03610929508831585.
Allen, D. M. (1971). Mean Square Error of Prediction as a Criterion for Selecting Variables. Technometrics, 13, 469-475. http://www.jstor.org/stable/1267161.
Allen, D. M. (1974). The Relationship between Variable Selection and Data Augmentation and Method for Prediction. Technometrics, 16, 125-127. http://www.jstor.org/stable/1267500.
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
Ozkale, R. M. and Kaciranlar, S. (2007). A Prediction-Oriented Criterion for Choosing the Biasing Parameter in Liu Estimation. Commincations in Statistics-Theory and Methods, 36(10): 1889–1903. http://doi.org/10.1080/03610920601126522.
The ridge model fitting liu
, Liu residual residuals
, Liu predicted value predict
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.1)) ## PRESS press(mod) ## Predicted residual press(mod, predr = TRUE)
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-5, 5, 0.1)) ## PRESS press(mod) ## Predicted residual press(mod, predr = TRUE)
The residuals
function computes the Liu residuals for scalar or vector value of biasing parameter .
## S3 method for class 'liu' residuals(object, ...)
## S3 method for class 'liu' residuals(object, ...)
object |
An object of class "liu". |
... |
Not presently used in this implementation. |
The generic functions residuals
can be used to compute residuals of object of class "liu" from function liu
.
Returns a vector or a matrix of the Liu residuals for scalar or vector value biasing parameter provided as argument to
liu
function.
Muhammad Imdad Ullah, Muhammad Aslam
Akdeniz, F. and Kaciranlar, S. (1995). On the Almost Unbiased Generalized Liu Estimators and Unbiased Estimation of the Bias and MSE. Communications in Statistics-Theory and Methods, 24, 1789–1897. http://doi.org/10.1080/03610929508831585.
Liu, K. (1993). A new Class of Biased Estimate in Linear Regression. Journal of Statistical Planning and Inference, 141, 189–196. http://doi.org/10.1080/03610929308831027.
The Liu model fitting liu
, Liu prediction predict
, Liu PRESS values press
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-2, 2, 0.1)) residuals(mod)
mod<-liu(y~., data = as.data.frame(Hald), d = seq(-2, 2, 0.1)) residuals(mod)
The summary
method for class "liu" for scalar or vector biasing parameter .
## S3 method for class 'liu' summary(object, ...) ## S3 method for class 'summary.liu' print(x, digits = max(4, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"), ...)
## S3 method for class 'liu' summary(object, ...) ## S3 method for class 'summary.liu' print(x, digits = max(4, getOption("digits") - 3), signif.stars = getOption("show.signif.stars"), ...)
object |
An "liu" object, typically generated by a call to |
x |
An object of class |
signif.stars |
logical: if |
digits |
The number of significant digits to use when printing. |
... |
Not presently used in this implementation. |
print.summary.liu
tries to be smart about formatting the coefficients, standard errors etc. and additionally gives 'significance stars' if signif.stars
is TRUE
.
The function summary
computes and returns a list of summary statistics of the fitted linear Liu regression model for scalar or vector value biasing parameter given as argument in
liu
function.
coefficients |
A
The standard error of intercept term is computed as,
|
stats |
Liu related statistics of R-squared, adjusted R-squared, F-statistics for testing of coefficients, AIC and BIC values for given biasing parameter |
rmse1 |
Minimum MSE value for given biasing parameter |
rmse2 |
Value of |
Muhammad Imdad Ullah, Muhammad Aslam
Aslam, M. (2014). Using Heteroscedasticity-Consistent Standard Errors for the Linear Regression Model with Correlated Regressors. Communication in Statistics-Simulation and Computation, 43, 2353–2373. http://doi.org/10.1080/03610918.2012.750354.
Cule, E. and De lorio, M. (2012). A semi-Automatic method to guide the choice of ridge parameter in ridge regression. arXiv:1205.0686v1 [stat.AP]. https://arxiv.org/abs/1205.0686v1.
Halawa, A. And El-Bassiouni, M. (2000). Tests of Regression Coefficients Under Ridge Regression Models. Journal of Statistical Computation and Simulation, 65, 341–356. https://www.tandfonline.com/doi/abs/10.1080/00949650008812006.
Hastie, T. and Tibshirani, R. (1990). Generalized Additive Models. Chapman & Hall.
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
The Liu model fitting liu
, Liu residual residuals
, Liu predicted value predict
mod <- liu(y~., as.data.frame(Hald), d = c(-2, -1.47218, 0, 0.5, 1) ) summary(mod) ## coefficients for first biasing parameter summary(mod)$summaries[[1]]$coefficients summary(mod)$summaries[[1]][[1]] ## Liu related statistics from summary function summary(mod)$summaries[[1]]$stats
mod <- liu(y~., as.data.frame(Hald), d = c(-2, -1.47218, 0, 0.5, 1) ) summary(mod) ## coefficients for first biasing parameter summary(mod)$summaries[[1]]$coefficients summary(mod)$summaries[[1]][[1]] ## Liu related statistics from summary function summary(mod)$summaries[[1]]$stats
The vcov
function computes the variance-covariance matrix for the estimates of linear Liu regression model Liu (1993) <doi:10.1080/03610929308831027>.
## S3 method for class 'liu' vcov(object, ...)
## S3 method for class 'liu' vcov(object, ...)
object |
For |
... |
Not presently used in this implementation. |
The vcov
function computes variance-covariance matrix for scalar or vector value of biasing parameter provided as argument to
liu
function.
A list of matrix of estimated covariances in the linear Liu regression model for scalar or vector biasing parameter d
d is produced. Each list element has row and column names corresponding to the parameter names given by the coef(mod)
. List items are named correspond to values of biasing parameter .
Covariance will be without intercept term, as intercept term is not penalized in the Liu regression.
Muhammad Imdad Ullah, Muhammad Aslam
Imdad, M. U. (2017). Addressing Linear Regression Models with Correlated Regressors: Some Package Development in R (Doctoral Thesis, Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan).
Imdadullah, M., Aslam, M., and Altaf, S. (2017). liureg: A comprehensive R Package for the Liu Estimation of Linear Regression Model with Collinear Regressors. The R Journal, 9 (2), 232–247.
Kaciranlar, S., Sakalhoglu, S., Akdeniz, F., Styan, G., and Werner, H. (1999). A new Biased Estimator in Linear Regression and a Detailed Analysis of the Widely Analysed Dataset on Portland Cement. Sankhya: The Indian Journal of Statistics, Series B, 61 (B3), 443–459.
The Liu model fitting liu
, Liu summary statistics summary.liu
, Liu prediction predict
, Liu PRESS values press
, Liu residual residuals
data(Hald) mod<- liu(y~., data = as.data.frame(Hald), scaling = "centered", d = seq(-2, 2, 0.1) ) vcov(mod)
data(Hald) mod<- liu(y~., data = as.data.frame(Hald), scaling = "centered", d = seq(-2, 2, 0.1) ) vcov(mod)